Abstract

The quantum dynamics of Bi 2Sr 2CaCu 2O 8+ δ intrinsic Josephson junctions (IJJ’s) is studied based on the escape rate measurements. The saturations observed in the escape temperature and the width of the switching current below 0.45 K (= T ∗) indicate the transition of the switching mechanism from the thermal activation to the macroscopic quantum tunneling at T ∗. It is shown that most of the switching properties are consistently explained in terms of the underdamped Josephson junction with quality factor of about 70 in spite of possible damping due to d-wave superconductivity. The present result gives the upper limit of the dissipation of IJJ’s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.