Abstract
In this paper, we propose a multimodal query suggestion method for video search which can leverage multimodal processing to improve the quality of search results. When users type general or ambiguous textual queries, our system MQSS provides keyword suggestions and representative image examples in an easy-to-use dropdown manner which can help users specify their search intent more precisely and effortlessly. It is a powerful complement to initial queries. After the queries are formulated as multimodal query (i.e., text, image), the new queries are input to individual search models, such as text-based, concept-based and visual example-based search model. Then we apply multimodal fusion method to aggregate the above-mentioned several search results. The effectiveness of MQSS is demonstrated by evaluations over a web video data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.