Abstract

Survival risk prediction using gene expression data is important in making treatment decisions in cancer. Standard neural network (NN) survival analysis models are black boxes with a lack of interpretability. More interpretable visible neural network architectures are designed using biological pathway knowledge. But they do not model how pathway structures can change for particular cancer types. We propose a novel Mutated Pathway Visible Neural Network (MPVNN) architecture, designed using prior signaling pathway knowledge and random replacement of known pathway edges using gene mutation data simulating signal flow disruption. As a case study, we use the PI3K-Akt pathway and demonstrate overall improved cancer-specific survival risk prediction of MPVNN over other similar-sized NN and standard survival analysis methods. We show that trained MPVNN architecture interpretation, which points to smaller sets of genes connected by signal flow within the PI3K-Akt pathway that is important in risk prediction for particular cancer types, is reliable. The data and code are available at https://github.com/gourabghoshroy/MPVNN. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call