Abstract

Total variation (TV) regularization has proven effective for a range of computer vision tasks through its preferential weighting of sharp image edges. Existing TV-based methods, however, often suffer from the over-smoothing issue and solution bias caused by the homogeneous penalization. In this paper, we consider addressing these issues by applying inhomogeneous regularization on different image components. We formulate the inhomogeneous TV minimization problem as a convex quadratic constrained linear programming problem. Relying on this new model, we propose a matching pursuit-based total variation minimization method (MPTV), specifically for image deconvolution. The proposed MPTV method is essentially a cutting-plane method that iteratively activates a subset of nonzero image gradients and then solves a subproblem focusing on those activated gradients only. Compared with existing methods, the MPTV is less sensitive to the choice of the trade-off parameter between data fitting and regularization. Moreover, the inhomogeneity of MPTV alleviates the over-smoothing and ringing artifacts and improves the robustness to errors in blur kernel. Extensive experiments on different tasks demonstrate the superiority of the proposed method over the current state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.