Abstract

Using the recently proposed computationally efficient model predictive static programming (MPSP), a suboptimal guidance law is presented in this paper for guidance of small range tactical surface-to-surface missiles satisfying both way-point as well as terminal impact angle constraints. The guidance law also satisfies terminal lateral acceleration constraint, and hence, it indirectly satisfies terminal body angle constraint as well. Way-point constraint gives the flexibility to shape the trajectory as well as to deceive the enemy by giving an impression that it is targeted elsewhere until the very last moment, thereby denying the enemy a long reaction time. The MPSP guidance law is primarily based on nonlinear optimal control theory and hence imbed effective trajectory optimization concepts into the guidance law. The computational requirement by the MPSP guidance is quite small and hence the necessary trajectory optimization is done in the onboard processor in real time. This throws the possibility of dynamically changing the way points onboard if necessary, which can serve as an effective additional counter measure strategy, without compromising on the terminal position and angle accuracies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call