Abstract

The threshold proxy signcryption can implement signature and encryption simultaneously in one logical step, and can be used to realize the decentralized protection of the group signature key, so it is an efficient technology for network security. Currently, most of the existing threshold proxy signcryption schemes are designed based on the traditional public key cryptosystems, and their security mainly depends on the difficulty of the large integer decomposition and the discrete logarithm. However, the traditional public key cryptosystems cannot resist the quantum computer attack, which makes the existing threshold proxy signcryption schemes based on traditional public key cryptosystems insecure against quantum attacks. Motivated by these concerns, we proposed a threshold proxy signcryption scheme based on Multivariate Public Key Cryptosystem (MPKC) which is one of the quantum attack-resistent public key algorithms. Under the premise of satisfying the threshold signcryption requirements of the threshold proxy, our scheme can not only realize the flexible participation of the proxy signcrypters but also resist the quantum computing attack. Finally, based on the assumption of Multivariate Quadratic (MQ) problem and Isomorphism Polynomial (IP) problem, the proof of the confidentiality and the unforgeability of the proposed scheme under the random oracle model is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.