Abstract
Abstract The desire for high performance on scalable parallel systems is increasing the complexity and tunability of MPI implementations. The MPI Tools Information Interface (MPI_T) introduced as part of the MPI 3.0 standard provides an opportunity for performance tools and external software to introspect and understand MPI runtime behavior at a deeper level to detect scalability issues. The interface also provides a mechanism to fine-tune the performance of the MPI library dynamically at runtime. In this paper, we propose an infrastructure that extends existing components — TAU, MVAPICH2, and BEACON to take advantage of the MPI_T interface and offer runtime introspection, online monitoring, recommendation generation, and autotuning capabilities. We validate our design by developing optimizations for a combination of production and synthetic applications. Using our infrastructure, we implement an autotuning policy for AmberMD (a molecular dynamics package) that monitors and reduces the internal memory footprint of the MVAPICH2 MPI library without affecting performance. For applications such as MiniAMR whose collective communication is latency sensitive, our infrastructure is able to generate recommendations to enable hardware offloading of collectives supported by MVAPICH2. By implementing this recommendation, the MPI time for MiniAMR at 224 processes reduces by 15%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.