Abstract

본 연구에서는 분산 메모리환경 병렬프로그래밍 모델의 표준인 MPI (Message Passing Interface) 기법과 침수해석 모형인 DHM(Diffusion Hydrodynamic Model) 모형을 연계하여 침수모형을 병렬화하고 기존의 기법으로 복잡하고 장시간의 계산시간을 요구하였던 계산에 대해 향상된 계산 성능을 구현하고자 하였다. 개발된 모형을 다양한 침수 시나리오를 바탕으로 가상유역과 실제유역에 대하여 코어 개수별로 모의함으로써 제내지 침수에 따른 침수범위 및 침수위의 추정, 및 계산시간 단축 효과를 입증 하고 병렬기법에 대한 홍수해석 분야의 적용성을 입증하고자 하였다. 본 연구에서 개발된 모형의 검증을 위하여 2차원 가상 제내지 및 실제 침수 사례에 대하여 적용하였고, 적용결과 동일한 정확도를 기준으로 계산시간 면에서 단일 코어와 비교하여 멀티코어를 사용한 경우 약 41~48%의 개선효과가 나타나는 것을 확인하였다. 본 연구에서 개발된 병렬해석 기법을 이용한 침수해석 모형은 멀티코어를 적용하여 짧은 계산시간으로 침수심, 침수구역, 홍수파 전달속도 등이 계산 가능하여, 실제 홍수 발생 시 침수지역에서의 신속한 예측 및 대처, 홍수위험지도 구축 등에 유용하게 이용될 수 있을 것으로 기대된다. This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.