Abstract

Objective: Drug resistance remains a major challenge for effective breast cancer chemotherapy. Resveratrol (Res) is a promising candidate for overcoming cancer chemoresistance, but it has low bioavailability due to poor absorption, and ready metabolism limits its application. This study aims to develop a Res-loaded mixed micelle system to be effective on drug resistance of breast cancer cells.Methods: A mixed micelle system made of methoxy poly (ethylene glycol)-b-polycaprolactone (mPEG-PCL) and d-α-Tocopherol polyethylene glycol succinate was prepared and Res was encapsulated to form Res-loaded mixed micelles. Furthermore, the antitumor activity against doxorubicin (Dox)-resistant breast cancer MCF-7/ADR cells was studied and the possible mechanism was elucidated.Results: The mixed micellar formulation increased drug uptake efficiency of Res by Dox-resistant breast cancer MCF-7/ADR cells, and induced higher rates of apoptotic cell death, as assessed by the accumulation of Sub G1 phases of cell cycle, nucleus staining and Annexin-FITC/propidium iodide assay. Moreover, Res-loaded mixed micelles also markedly enhanced Dox-induced cytotoxicity in MCF-7/ADR cells and increased the cellular accumulation of Dox by downregulating the expression of P-glycoprotein (P-gp) and inhibiting the activity thereof.Conclusion: The cumulative evidence indicates that Res-loaded mixed micelles hold significant promise for the treatment of drug-resistant breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call