Abstract

ABSTRACT In this paper, we consider the class of mathematical programmes with complementarity constraints (MPCC). Specifically, we focus on strong stability of M- and S-stationary points for MPCC. Kojima introduced this concept for standard nonlinear optimization problems. It refers to several well-posedness properties of the underlying problem. Besides its topological definition, the challenge is to state an algebraic characterization of strong stability. We obtain such a description for S-stationary points whose components of Lagrange vectors corresponding to bi-active constraints do not mutually vanish. We call these points weakly nondegenerate. Moreover, we show that a particular constraint qualification is necessary for strong stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.