Abstract

In this paper we study the class of mathematical programs with complementarity constraints MPCC. Under the Linear Independence constraint qualification MPCC-LICQ we state a topological as well as an equivalent algebraic characterization for the strong stability (in the sense of Kojima) of an M-stationary point for MPCC. By allowing perturbations of the describing functions up to second order, the concept of strong stability refers here to the local existence and uniqueness of an M-stationary point for any sufficiently small perturbed problem where this unique solution depends continuously on the perturbation. Finally, some relations to S- and C-stationarity are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.