Abstract

In this paper, the performance and durability of hybrid PEM fuel cell vehicles are investigated. To that end, a hybrid predictive controller is proposed to improve battery performance and to avoid fuel cell and battery degradation. Such controller deals with this complex control problem by handling binary and continuous variables, piecewise affine models and constraints. Moreover, the control strategy is to track motor power demand and keep batteries close to a desired battery state of charge which is appropriately chosen to minimize hydrogen consumption. It is important to highlight the consideration of constraints which are directly related to the goals of this paper, such as minimum fuel cell power threshold and time limitation between fuel cell startups and shutdowns. Furthermore, different models have been elaborated and particularized for a vehicle prototype. These models include few innovations such as a reference governor which smooths fuel cell power demand during sharp power profiles, forcing batteries to supply such peaks and resulting a longer fuel cell lifetime. Battery thermal dynamics are also taken into account in these models in order to analyze the effect of battery temperature on its degradation. Finally, this paper studies the feasibility of the real implementation, presenting an explicit formulation as a solution to reduce execution time. This explicit controller exhibits the same performance as the hybrid predictive controller does with a reduced computational effort. All the results have been validated in several simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.