Abstract

Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer. In the present study, we investigated the possible involvement of Midkine dependent PI3K pathway in alteration of TJs under MPA treatment. Caco-2 cells were grown as monolayer to develop TJs and were treated for 72 h with DMSO (control) or MPA in presence and absence of Midkine inhibitor (iMDK) or PI3K inhibitors (LY/AMG). Caco-2 monolayer integrity was assessed by transepithelial electrical resistance (TEER) and FITC-dextran assays. Our functional assays showed that PI3K inhibitors (LY/AMG) can significantly inhibit the compromised TJs integrity of MPA-treated Caco-2 cells monolayer. Chromatin immunoprecipitation analyses showed a significant epigenetic activation of Midkine, PI3K, Cdx-2, and Cldn-2 genes and epigenetic repression of Cldn-1 gene after MPA treatment. The MPA-induced epigenetic alterations were further confirmed by mRNA and protein expression analysis. Collectively, our data shows that PI3K pathway as the downstream target of Midkine which in turn modulates p38MAPK and pAKT signaling to alter TJs permeability in Caco-2 cell monolayers treated with MPA. These results highlight the possible use of either Midkine or PI3K inhibitors as therapeutic agents to prevent MPA induced GI disturbances.

Highlights

  • Immunosuppressive drugs (ISDs) are prescribed to lower the body’s ability to reject transplanted organs (Gummert et al, 1999)

  • We investigated the influence of Mycophenolic acid (MPA) treatment on the regulation of these pathways through targeted epigenetic approach

  • We performed Midkine-dependency analysis for PI3K epigenetic activation during MPA treatment and found that the inhibition of Midkine results in downregulation of PI3K expression and the epigenetic silencing marked by increased H3K27me3 levels (Figures 1A,B)

Read more

Summary

Introduction

Immunosuppressive drugs (ISDs) are prescribed to lower the body’s ability to reject transplanted organs (Gummert et al, 1999). Clinical data show the occurrence of a significant number of drug-induced diarrhea incidences in liver and kidney organ transplanted patients receiving MPA therapy (Helderman and Goral, 2002; Malinowski et al, 2011; Krones and Hogenauer, 2012). To overcome the diarrhea issue, two possibilities were proposed, in which either to quantitatively assess and compare the overall diarrheogenic potential or to explore the cellular mechanism(s) of diarrhea of MPA (Pescovitz and Navarro, 2001). On the other hand, understanding cellular mechanism(s) could help to describe the pathophysiology of ISD-induced diarrhea and to explore potential anti-diarrheal intervention

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call