Abstract

Xylooligosaccharides (XOs) are small oligomers constituted by 2−10 units of xylan monomers, with important nutraceutical properties. They can be produced through hydrolysis of xylan catalyzed by an endoxylanase. The use of immobilized and stabilized enzymes may decrease the industrial process costs. In this study, XynA, a recombinant enzyme from B. subtilis, was immobilized in three different supports: agarose and chitosan activated with glyoxal groups and chitosan activated with glutaraldehyde. High immobilization yields were obtained, 100% for agarose-glyoxal and chitosan-glutaraldehyde, 82% for chitosan-glyoxal, with recovered activities of 42.7 (±1.3), 10.7 ± 0.8 and 53.6% (± 1.7), respectively. A great increase in the thermal stability of the enzyme (at 56 °C, pH 5.5) was achieved for the glyoxal derivatives: 75-fold for chitosan and 8600-fold for agarose. The great thermal stability obtained to the derivative agarose-glyoxal can be explained by the enzyme immobilization through lysine residues located in unstable sites of the protein structure. The agarose-glyoxal derivative was tested in the production of XOs (X2, X3 and X4) from soluble and conventional birchwood xylan, reaching approximately 20% of conversion in 3 h and 23% in 24 h, without the undesirable xylose production. After 10 cycles of hydrolysis, the conversion remained almost unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.