Abstract

Magnetic pulse welding (MPW) is a clean and green solid-state method that provides metallurgical joints. MPW is a high-speed single-shot welding technique. Additive manufacturing (AM) laser powder-bed fusion method is an emerging technology, but so far shows size limitations of the three-dimensional (3D) printed parts. One way to overcome these limitations is joining AM to AM parts and/or AM to wrought components by welding. This contribution discusses, for the first time, the microstructures observed in the bonding zone during MPW of AM laser powder-bed fusion AlSi10Mg and wrought AA6060-T6. The origin of the MPW morphologies and the distribution of the alloying elements were studied. A continuous defect-free joint was observed, presenting the typical wavy interface. The residue of metal jet emitted during MPW was investigated and analysed. Leak testing revealed a leak rate better than 5 × 10−9 std-cc sec−1 He.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call