Abstract

This paper is devoted to the study of a fascinating class of residuated lattices, the so-called mp-residuated lattice, in which any prime filter contains a unique minimal prime filter. A combination of algebraic and topological methods is applied to obtain new and structural results on mp-residuated lattices. It is demonstrated that mp-residuated lattices are strongly tied up with the dual hull-kernel topology. Especially, it is shown that a residuated lattice is mp if and only if its minimal prime spectrum, equipped with the dual hull-kernel topology, is Hausdorff if and only if its prime spectrum, equipped with the dual hull-kernel topology, is normal. The class of mp-residuated lattices is characterized by means of pure filters. It is shown that a residuated lattice is mp if and only if its pure filters are precisely its minimal prime filters, if and only if its pure spectrum is homeomorphic to its minimal prime spectrum, equipped with the dual hull-kernel topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.