Abstract
MOZ (monocytic leukaemia zinc finger protein; also known as ZNF220 or MYST3) is a member of the MYST family of protein acetyltransferases. Chromosomal translocations involving the MOZ gene are associated with AML (acute myeloid leukaemia), suggesting that it has a role in haematopoiesis. Recurrent reciprocal translocations fuse the MOZ gene [or the gene encoding MORF (MOZ-related factor); also known as MYST4] to genes encoding the nuclear receptor co-activators CBP [CREB (cAMP response element-binding protein)-binding protein], p300 or the p160 protein TIF2 (transcription intermediary factor 2). The resulting fusion proteins can transform haematopoietic progenitors in vitro, and induce myeloproliferative disease in mice. Recent insights into the molecular mechanisms underlying these effects indicate that MOZ fusion proteins interfere with the activities of transcription factors such as nuclear receptors, p53 and Runx proteins. Our studies suggest that subverting the function of cellular CBP and p300 proteins may play a key role in this process. Here we review the recent progress in understanding the role of MOZ fusion proteins in the aetiology of AML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.