Abstract

Nanofibers were prepared with different ratios of chitosan (CS) and polyethylene oxide (PEO) via the electrospinning technique, and tested for morphological features using scanning electron microscopy (SEM). Drug content, drug loading, release of moxifloxacin (MXF) at pH 4.7 and pH 5.5, and degree of swelling were investigated. Further characterization was accomplished via X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). Antibacterial activity was studied in comparison with blank nanofibers. Furthermore, wound healing was studied in Sprague-Dawley rats. A formulation consisting of CS/PEO (50/50) exhibited smooth-surfaced and beadless nanofibers having a mean diameter of 138 ± 25 nm. Drug content and drug loading in the optimized formulation, consisting of MXF, CS and PEO (0.5/2.5/2.5, w/w/w), were 99–101% and 9.1%, respectively. MXF release in 48 hours was 79.83 ± 4.2% and 94.29 ± 3.9% at pH 7.4 and pH 5.5, respectively. Moreover, degree of swelling was 133 ± 13%. The drug existed in the amorphous state and had no covalent interaction with the polymers. MXF-loaded nanofibers demonstrated greater stability, antibacterial activity and wound healing efficacy than did blank nanofibers. Accordingly, MXF-loaded CS-PEO polymeric composite nanofibers might be a potential wound dressing for effective wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.