Abstract

Recent advances in metalorganic vapor phase epitaxy (MOVPE) of HgCdTe are reviewed that have impacted in situ growth of bandgap engineered IR detector devices. MOVPE can now be readily used to grow multilayer HgCdTe structures with complete flexibility in iodine donor and arsenic acceptor doping and tight control of alloy composition. 100% activation of both donor and acceptor dopants has been achieved and the mobilities and lifetimes of HgCdTe grown on lattice-matched CdZnTe are comparable to the best values achieved in HgCdTe by any epitaxial growth technique. The defects measured by etch pit density counts in multilayer structures with n-type and p- type regions are reported. Single-band IR detector device results are reported that have been grown in situ, for operation in the long wavelength (LW, 8 - 12 micrometer) and medium wavelength (MW, 3 - 5 micrometer) IR spectral bands. Their material characteristics and detector performances are reviewed and compared with theoretical modeling results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.