Abstract

In the ground moving target indication with synthetic aperture radar (SAR) community, algorithms used to estimate the velocity of a detected moving target are important because they are relative to the topics about refocusing and azimuth displacement correction. The velocity is regarded as a vector with two components, one in azimuth and one in range direction, and new algorithms aiming at estimating the two components are proposed and verifled. The range velocity estimator transforms a detected patch containing a moving target to range Doppler domain by using the 1-D fast Fourier Transform in each range bin to achieve its range Doppler locus. The slope of the range Doppler locus is computed by using the Radon Transform on the range Doppler plane and the range velocity component is worked out according to radar system parameters and the slope value. Two estimators are proposed to compute the azimuth velocity component. One is based on symmetric defocusing in Doppler domain, the other is based on phase gradient in wave-number domain. Experiments conflrm the efiectiveness of the estimators by using simulated and fleld data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call