Abstract
Incremental search algorithms, such as Generalized Fringe-Retrieving A* and D* Lite, reuse search trees from previous searches to speed up the current search and thus often find cost-minimal paths for series of similar search problems faster than by solving each search problem from scratch. However, existing incremental search algorithms have limitations. For example, D* Lite is slow on moving target search problems, where both the start and goal states can change over time. In this paper, we therefore introduce Moving Target D* Lite, an extension of D* Lite that uses the principle behind Generalized Fringe-Retrieving A* to repeatedly calculate a cost-minimal path from the hunter to the target in environments whose blockages can change over time. We demonstrate experimentally that Moving Target D* Lite is four to five times faster than Generalized Adaptive A*, which so far was believed to be the fastest incremental search algorithm for solving moving target search problems in dynamic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.