Abstract

To overcome the limitation of existing algorithms for detecting moving objects from the dynamic scenes, a foreground detection algorithm based on optical flow field analysis is proposed. Firstly, the object boundary information is determined by detecting the differences in optical flow gradient magnitude and optical flow vector direction between foreground and background. Then, the pixels inside the objects are obtained based on the point-in-polygon problem from computational geometry. Finally, the superpixels per frame are acquired by over-segmenting method. And taking the superpixels as nodes, the Markov Random field model is built, in which the appearance information fitted by Gaussian Mixture Model is combined with spatiotemporal constraints of each superpixel. The final foreground detection result is obtained by finding the minimum value of the energy function. The proposed algorithm does not need any priori assumptions, and can effectively realize the moving object detection in dynamic and stationary background. The experimental results show that the proposed algorithm is superior to the existing state-of-the-art algorithms in the detection accuracy, robustness and time consuming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.