Abstract
For a one-dimensional nonlinear optical medium with a periodic refraction index, new two-parameter soliton solutions of electrodynamics equations have been found. These solutions represent two interacting waves that propagate in two opposite directions. The oscillation frequency of each wave may fall either into the forbidden gap in the linear spectrum or outside it, and the group velocity may vary from zero to a maximal value that is determined by the parameters of the medium. Algebraic soliton solutions have been found as the limit of the nonlinear solutions, when the nonlinear wave frequency tends to the frequency of one of the linear-spectrum branches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.