Abstract

Topology optimization based on moving morphable components efficiently generates a topology that is expressed by a few geometrical design variables. However, conventional moving morphable components have three problems: lack of continuity between components, difficulty in describing a smooth rollup shape, and difficulty in generating a rigid joint to an optimized topology. In this study, a novel topology optimization framework was developed by introducing theories devised for multibody analysis. First, an adaptive moving morphable component based on absolute nodal coordinate formulation was proposed. Because both the position and gradient are used as design variables, continuity is ensured. Second, a position and gradient connection algorithm leveraging the linear constraint of the absolute nodal coordinate formulation was proposed to describe the smooth rollup shape. Third, a rigid joint was generated by introducing the gradient constraint equation in an optimizer. The developed framework exhibited superior convergence as compared with the conventional one in the benchmark short beam problem. It successfully generated an optimal topology with the intent of a designer (that is, designer-selected topology continuity and rigid joints), which facilitated the assembly and manufacturing of topologically optimized structural members to construct an entire aerospace structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.