Abstract
ABSTRACT In this paper, an online optimal adaptive robust fuzzy controller based on the Moving Least Squares (MLS) and Team Game Algorithm (TGA) is introduced to control uncertain chaotic nonlinear systems. At first, a robust supervisory stabiliser and a fuzzy adaptive PID controller are designed and combined to handle a Duffing-Holmes chaotic oscillator. Next, the TGA is utilised to optimise the parameters of the designed fuzzy adaptive robust controller for different values of system disturbances. Then, to adapt the optimum design parameters of the controller with the uncertain values of the external disturbances, the MLS approximation is implemented. In order to evaluate the performance of the proposed technique, it is applied on a Duffing-Holmes chaotic nonlinear oscillator with different initial conditions. The results and the analysis prove the efficiency of the proposed controller with regard to uncertain systems’ challenging external disturbances that impair the stability, accuracy and optimality of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.