Abstract

We derive numerical stability conditions and analyze convergence to analytical nonlocal solutions of 1D peridynamic models for transient diffusion with and without a moving interface. In heat transfer or oxidation, for example, one often encounters initial conditions that are discontinuous, as in thermal shock or sudden exposure to oxygen. We study the numerical error in these models with continuous and discontinuous initial conditions and determine that the initial discontinuities lead to lower convergence rates, but this issue is present at early times only. Except for the early times, the convergence rates of models with continuous and discontinuous initial conditions are the same. In problems with moving interfaces, we show that the numerical solution captures the exact interface location well, in time. These results can be used in simulating a variety of reaction-diffusion type problems, such as the oxidation-induced damage in zirconium carbide at high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call