Abstract

AbstractPlastic deformation of crystals is mostly mediated by the motion of dislocations. During the last two decades a lot of effort was directed towards including more knowledge about dislocations in continuum descriptions of plasticity. Promising approaches towards building continuum plasticity theories on averages of the behavior of many single dislocations have been formulated under the assumption of small deformations. In the current paper we derive the kinematics of single dislocations moving inside a dislocated crystal simultaneously deforming by the motion of other dislocations in the language of large deformation plasticity. The evolution equation of a single dislocation is connected to the formation of kinks and jogs due to cutting by other dislocations and is shown to parallel the evolution equation of the dislocation density tensor in finite deformation formulation. Implications for dislocation based modeling of plasticity are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.