Abstract

Integrated vertical DMOS transistors of a 90-V smart power technology are studied under short-duration current pulses. Movement of current filaments and multiple hot spots observed by transient interferometric mapping under nondestructive snap-back conditions are reported. Device simulations show that the base push-out region associated with the filament can move from cell to cell along the drain buried layer due to the decrease of the avalanche generation rates by increasing temperature. The influence of the termination layout of the source field on the hot-spot dynamics is studied. Conditions for filament motion are discussed. The described mechanisms help homogenizing the time averaged current-density distribution and enhance the device robustness against electrostatic discharges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.