Abstract
Monotonicity formulae play a crucial role for many geometric PDEs, especially for their regularity theories. For minimal submanifolds in a Euclidean ball, the classical monotonicity formula implies that if such a submanifold passes through the centre of the ball, then its area is at least that of the equatorial disk. Recently Brendle and Hung proved a sharp area bound for minimal submanifolds when the prescribed point is not the centre of the ball, which resolved a conjecture of Alexander, Hoffman and Osserman. Their proof involves asymptotic analysis of an ingeniously chosen vector field, and the divergence theorem.In this article we prove a sharp ‘moving-centre’ monotonicity formula for minimal submanifolds, which implies the aforementioned area bound. We also describe similar moving-centre monotonicity formulae for stationary p-harmonic maps, mean curvature flow and the harmonic map heat flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.