Abstract

In this paper, we propose an adaptive and accurate moving cast shadow detection method employing online sub-scene shadow modeling and object inner-edges analysis for applications of static-camera video surveillance. To describe shadow appearance more accurately, the proposed method builds adaptive online shadow models for sub-scenes with different conditions of irradiance and reflectance. The online shadow models are learned by utilizing Gaussian functions to fit the significant peaks of accumulating histograms, which are calculated from Hue, Saturation and Intensity (HSI) difference of moving objects between background and foreground. Additionally, object inner-edges analysis is adopted to reject camouflages, which are misclassified foreground regions that are highly similar to shadows. Finally, the main shadow regions are expanded to recycle the misclassified shadow pixels based on local color constancy. The proposed algorithm can adaptively handle the shadow appearance changes and camouflages without prior information about illuminations and scenarios. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.