Abstract
Unsteady flows of a rarefied gas in a full space caused by an oscillation of an infinitely wide plate in its normal direction are investigated numerically on the basis of the BhatnagarGross-Krook (BGK) model of the Boltzmann equation. The talk aims at showing properties and difficulties inherent to moving boundary problems in kinetic theory of gases using a simple one-dimensional setting. More specifically, the following two problems are considered: (Problem I) the plate starts a forced harmonic oscillation (forced motion); (Problem II) the plate, which is subject to an external restoring force obeying Hooke’s law, is displaced from its equilibrium position and released (free motion). The physical interest in Problem I lies in the propagation of nonlinear acoustic waves in a rarefied gas, whereas that in Problem II in the decay rate of the oscillation of the plate. An accurate numerical method, which is capable of describing singularities caused by the oscillating plate, is developed on the basis of the method of characteristics and is applied to the two problems mentioned above. As a result, the unsteady behavior of the solution, such as the propagation of discontinuities and some weaker singularities in the molecular velocity distribution function, are clarified. Some results are also compared with those based on the existing method. The talk is based on [1, 2, 3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.