Abstract

ABSTRACT We outline the methodology of implementing moving boundary conditions into the moving-mesh code manga. The motion of our boundaries is reactive to hydrodynamic and gravitational forces. We discuss the hydrodynamics of a moving boundary as well as the modifications to our hydrodynamic and gravity solvers. Appropriate initial conditions to accurately produce a boundary of arbitrary shape are also discussed. Our code is applied to several test cases, including a Sod shock tube, a Sedov–Taylor blast wave, and a supersonic wind on a sphere. We show the convergence of conserved quantities in our simulations. We demonstrate the use of moving boundaries in astrophysical settings by simulating a common envelope phase in a binary system, in which the companion object is modelled by a spherical boundary. We conclude that our methodology is suitable to simulate astrophysical systems using moving and reactive boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.