Abstract

We show the existence of steadily moving solitary pulses (SPs) in the complex Ginzburg-Landau equation, which includes the cubic-quintic nonlinearity and a conservative linear driving term, whose amplitude is a standing wave with wave number k and frequency omega, the motion of the SPs being possible at resonant velocities +/-omega/k, which provide for locking to the drive. The model may be realized in terms of traveling-wave convection in a narrow channel with a standing wave excited in its bottom (or on the surface). An analytical approximation is developed, based on an effective equation of motion for the SP coordinate. Direct simulations demonstrate that the effective equation accurately predicts characteristics of the driven motion of pulses, such as a threshold value of the drive's amplitude. Collisions between two solitons traveling in opposite directions are studied by means of direct simulations, which reveal that they restore their original shapes and velocity after the collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.