Abstract
In this research, we propose a movie recommender system that can recommend movies to both new and existing customers. It searches movie databases for all of the relevant data, such as popularity and beauty that is required for a recommendation. We apply both content-based and collaborative filtering and evaluate their advantages and disadvantages. To build a system that delivers more exact movie recommendations, we employ hybrid filtering, which is a combination of the outcomes of these two processes. The recommendation engines are also used for business purposes and to make strategies for organizations. Due to the growing demands of customers and user’s recommendation systems plays a huge role. These recommender systems also help us to utilize our time in the busy world by giving us more relevant searches. These systems are generally used with the movie’s websites or with many commercial applications and are of great use. This type of recommendation system can be also used for precise results. It will make movies suggestions more relevant as per the need of the users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EAI Endorsed Transactions on Creative Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.