Abstract

Transport Triggered Architectures (TTAs) possess many advantageous, such as modularity, flexibility, and scalability. As an exposed datapath architecture, TTAs can effectively reduce the register file (RF) pressure in both number of accesses and number of RF ports. However, the conventional TTAs also have some evident disadvantages, such as relative low code density, dynamic-power wasting due to separate scheduling of source operands, and inefficient support for variant immediate values. In order to preserve the merit of conventional TTAs, while solving these aforementioned issues, we propose, MOVE-Pro, a novel low power and high code density TTA architecture. With optimizations at instruction set architecture (ISA), architecture, circuit, and compiler levels, the low-power potential of TTAs is fully exploited. Moreover, with a much denser code size, TTAs performance is also improved accordingly. In a head-to-head comparison between a two-issue MOVE-Pro processor and its RISC counterpart, we shown that up to 80% of RF accesses can be reduced, and the reduction in RF power is successfully transferred to the total core power saving. Up to 11% reduction of the total core power is achieved by our MOVE-Pro processor, while the code density is almost the same as its RISC counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.