Abstract
Effective conservation of large predators requires a broad understanding of their ecology. Caranx ignobilis is a large marine predator well represented in coral reef environments, yet they are poorly studied. Passive acoustic monitoring was used to track the movements of 20 C. ignobilis at offshore reefs in the central Great Barrier Reef from 2012 to 2014. Using a modelling approach, temporal changes in movement patterns of C. ignobilis were explored to determine if individuals exhibited predictable movement patterns. The effects of biological and environmental variables on monthly space use, daily presence and hourly depth use were investigated to define any response to environmental changes. Caranx ignobilis typically remained at their capture reef with 98.8% of detections recorded at these locations. Individuals were recorded in the study site for periods from 9 to 335 days (mean = 125.9) with a mean residency index of 0.53, indicating movements away from the reef or out of detection range occurred on the scale of days. Inter-reef movements from only three individuals were recorded which coincided with the summer full moon so may have been related to spawning behaviour. Environmental drivers were correlated with daily presence and hourly depth use of C. ignobilis but had little influence on monthly space use. There was little or no effect of fish size on space use, presence and depth use. By improving the current understanding of movement patterns of this large teleost among individual coral reefs, the results of this study reveal that site attachment may be present and that environmental parameters play a role in observed movement patterns related to depth and presence. These data provide useful information for the development of management plans, particularly in relation to space-based protection.
Highlights
Effective conservation of large predators requires a broad understanding of their ecology
Recent research has shown water temperature to be an important factor in the distribution of the reef predator Lethrinus miniatus (Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ: Do environmental variables influence movement patterns of an exploited coral reef fish?, forthcoming) and that seasons influence the movement patterns of sharks and pelagic teleosts [13,18,19,20]
From 2012 to 2014, 20 C. ignobilis were released with acoustic transmitters within the offshore reefs array in the central Great Barrier Reef (GBR) region
Summary
Effective conservation of large predators requires a broad understanding of their ecology. Changes in environmental and human-related factors can have significant effects on coral reef ecosystems These changes impact coral species and mobile reef species such as sharks and large teleosts and their interactions with the. Recent research has shown water temperature to be an important factor in the distribution of the reef predator Lethrinus miniatus (Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ: Do environmental variables influence movement patterns of an exploited coral reef fish?, forthcoming) and that seasons influence the movement patterns of sharks and pelagic teleosts [13,18,19,20]. Our understanding of how changes in environmental conditions affect coral reef predator movement is limited ([3], Currey LM, Heupel MR, Simpfendorfer CA, Williams AJ: Do environmental variables influence movement patterns of an exploited coral reef fish?, forthcoming). Understanding how large-bodied reef teleosts move and respond to changes within their environment is critical for understanding how best to manage these species, including the benefits that they derive from marine protected areas [6,12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.