Abstract

The dorsal premotor cortex (PMd) is thought to play a significant role in movement preparation cued by sensory information rather than in self-initiated movements. The evidence in humans for this contention is still circumstantial. Here we explored the effects of modulation of PMd by excitability decreasing 1 Hz repetitive transcranial magnetic stimulation (rTMS) versus excitability increasing 5 Hz rTMS on two forms of movement related cortical potentials: contingent negative variation (CNV) versus Bereitschaftspotential (BP) reflecting externally cued versus self-triggered movement preparation. Ten healthy right-handed subjects performed visually cued or self-triggered simple sequential finger movements with their right hand. CNV and BP were recorded by 25 EEG electrodes covering the fronto-centro-parietal cortex and divided into an early (1500-500 ms before a go-signal or movement onset) and a late potential (500-0 ms). MRI-navigated 1 Hz rTMS of the left PMd resulted in significant increase of the late CNV over the left central region predominantly contralateral to the prepared right hand movement, while 5 Hz rTMS had no effect on CNV. In contrast, 1 and 5 Hz rTMS did not modify BP. Control experiments of 1 Hz rTMS of the supplementary motor area (SMA) and of low-intensity 1 Hz rTMS of the left primary motor cortex did not change CNV, but 1 Hz SMA-rTMS increased late BP. This double dissociation of effects of PMd-rTMS versus SMA-rTMS on CNV versus BP provides direct evidence that the left PMd in humans is more involved in preparatory processes of externally cued rather than self-initiated movements, contrasting with an opposite role of the SMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.