Abstract

ObjectivesDetermine the influence of movement profile on systemic stress and mechanical loading before and after high training load exposure. DesignCross-sectional cohort study. Methods43 physically active, college-aged field or court sport female athletes participated in this study. Participants were assigned to a “excellent” (n=22; age=20.5±1.9yrs, height=1.67±0.67m, mass=64.5±7.8kg) or “poor” (n=21; age=20.4±1.3yrs, height=1.69±0.67m, mass=60.9±6.1kg) movement group defined by The Landing Error Scoring System. Participants completed five cycles of high training load exercise of 5-min treadmill-running at a speed coincident with 100–120% ventilatory threshold and 10 jump-landings from a 30-cm box. Jump-landing vertical ground reaction force and serum cortisol were evaluated prior to and following exercise. Vertical ground reaction force ensemble averages and 95% confidence interval waveforms were generated for pre-exercise, post-exercise, and pre-post exercise changes. A two-way mixed model ANOVA was used to evaluate the effect of movement profile on systemic stress before and after exercise. ResultsThere was no significant difference in changes in serum cortisol between the poor and excellent groups (p=0.69) in response to exercise. Overall, individuals in the poor group exhibited a higher serum cortisol level (p<0.05, d=0.85 [0.19,1.48]). The poor group exhibited higher magnitude vertical ground reaction force prior to (d=1.02–1.26) and after exercise (d=1.15) during a majority of the stance phase. ConclusionsIndividuals with poor movement profiles experience greater mechanical loads compared to individuals with excellent movement profiles. A poor movement profile is associated with greater overall concentrations of circulating cortisol, representative of greater systemic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.