Abstract

There has been recent interest in the threat to bees posed by the use of systemic insecticides. One concern is that systemic insecticides may translocate from the soil into pollen and nectar of plants, where they would be ingested by pollinators. This paper reports on the movement of two such systemic neonicotinoid insecticides, imidacloprid and thiamethoxam, into the pollen and nectar of flowers of squash (Cucurbita pepo cultivars “Multipik,” “Sunray” and “Bush Delicata”) when applied to soil by two methods: (1) sprayed into soil before seeding, or (2) applied through drip irrigation in a single treatment after transplant. All insecticide treatments were within labeled rates for these compounds. Pollen and nectar samples were analyzed using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography mass spectrometric analysis. The concentrations found in nectar, 10±3 ppb (mean ± s.d) for imidacloprid and 11±6 ppb for thiamethoxam, are higher than concentrations of neonicotinoid insecticides in nectar of canola and sunflower grown from treated seed, and similar to those found in a recent study of neonicotinoids applied to pumpkins at transplant and through drip irrigation. The concentrations in pollen, 14±8 ppb for imidacloprid and 12±9 ppb for thiamethoxam, are higher than those found for seed treatments in most studies, but at the low end of the range found in the pumpkin study. Our concentrations fall into the range being investigated for sublethal effects on honey bees and bumble bees.

Highlights

  • The long-term security of insect pollination for food crops is a major concern in the U.S [1] and around the world [2,3]

  • Losses of species diversity have been attributed to changes in land use with reduced season-long bee forage and nesting habitats, spread of pathogens (Nosema bombi and Crithidia bombi) from commercial bumble bee colonies to wild populations, and fragmented populations with low genetic diversity, with changes in pesticides use cited as a possible additional factor [1,6,7]

  • Results for nectar were not analyzed statistically because samples were pooled over blocks in order to have enough material for chemical analysis. Both imidacloprid and thiamethoxam were detected in all parts of the squash

Read more

Summary

Introduction

The long-term security of insect pollination for food crops is a major concern in the U.S [1] and around the world [2,3]. Many potential factors could be involved in these global declines of managed and wild pollinating insects. Losses of managed populations have been attributed to the worldwide movement of parasitic mites, viruses, and the pathogen Nosema ceranae; loss of genetic diversity; loss of bee forage; and global trade and economic changes; as well as changes in pesticide use [1,4,5]. Losses of species diversity have been attributed to changes in land use with reduced season-long bee forage and nesting habitats, spread of pathogens (Nosema bombi and Crithidia bombi) from commercial bumble bee colonies to wild populations, and fragmented populations with low genetic diversity, with changes in pesticides use cited as a possible additional factor [1,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call