Abstract

The motile behaviour of mitochondria in the ovarian trophic cord of the red cotton bug, Dysdercus intermedius, was observed optically using video-enhanced differential interference contrast (AVEC-DIC) microscopy. The motion of 258 video-recorded mitochondria was analysed of which 10%-30% were found to move during the observation periods. Of the moving mitochondria 76% travelled towards the oocyte with an average velocity of 3.37 μm/ min, and 24% towards the tropharium with 2.84 μm/min. The movement was found to be basically of the saltatory type I as known from nerve axons characterized by the absence of directional reversal. In some cases short periods of interrupted motion of type II, i.e. with local oscillations, were observed. Individual mitochondria often showed velocity variations during the excursions. The hemipteran trophic cords are known to contain numerous parallel microtubules. As the observed type of mitochondrial motility resembles axonal transport, a modified transport hypothesis is presented for the microtubule-based motility of organelles in the nurse strands of telotrophic insect ovarioles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.