Abstract
BackgroundMotor impairment after stroke interferes with performance of everyday activities. Upper limb spasticity may further disrupt the movement patterns that enable optimal function; however, the specific features of these altered movement patterns, which differentiate individuals with and without spasticity, have not been fully identified. This study aimed to characterize the kinematic and proprioceptive deficits of individuals with upper limb spasticity after stroke using the Kinarm robotic exoskeleton.MethodsUpper limb function was characterized using two tasks: Visually Guided Reaching, in which participants moved the limb from a central target to 1 of 4 or 1 of 8 outer targets when cued (measuring reaching function) and Arm Position Matching, in which participants moved the less-affected arm to mirror match the position of the affected arm (measuring proprioception), which was passively moved to 1 of 4 or 1 of 9 different positions. Comparisons were made between individuals with (n = 35) and without (n = 35) upper limb post-stroke spasticity.ResultsStatistically significant differences in affected limb performance between groups were observed in reaching-specific measures characterizing movement time and movement speed, as well as an overall metric for the Visually Guided Reaching task. While both groups demonstrated deficits in proprioception compared to normative values, no differences were observed between groups. Modified Ashworth Scale score was significantly correlated with these same measures.ConclusionsThe findings indicate that individuals with spasticity experience greater deficits in temporal features of movement while reaching, but not in proprioception in comparison to individuals with post-stroke motor impairment without spasticity. Temporal features of movement can be potential targets for rehabilitation in individuals with upper limb spasticity after stroke.
Highlights
Motor impairment after stroke interferes with performance of everyday activities
The objective of this study was to characterize the features of kinematics and proprioception that are impaired in individuals with upper limb spasticity after stroke using the Kinarm robotic exoskeleton
Participants were included in the study if they were over 18 years of age, had a confirmed diagnosis of stroke, could understand the task instructions, were able to maintain a position of 90° shoulder abduction with support, had normal or corrected vision, and were able to participate in the informed consent process
Summary
Motor impairment after stroke interferes with performance of everyday activities. Upper limb spasticity may further disrupt the movement patterns that enable optimal function; the specific features of these altered movement patterns, which differentiate individuals with and without spasticity, have not been fully identified. This study aimed to characterize the kinematic and proprioceptive deficits of individuals with upper limb spasticity after stroke using the Kinarm robotic exoskeleton. Sensorimotor impairments after stroke result in functional deficits that are targets for neurorehabilitation interventions. Important to effective implementation of these interventions is an understanding of the characteristics of the specific deficits that persist after stroke. Better alignment between these specific deficits and the rehabilitation approach may enhance opportunities for recovery after stroke. Reductions in spasticity can Mochizuki et al Journal of NeuroEngineering and Rehabilitation (2019) 16:146 increase use of the affected limb [4] and improve functional outcomes [5,6,7,8], though the mechanism of improvement (i.e. enhanced proprioception, normalized kinematic patterns) is not well established. It is necessary to characterize sensorimotor impairment in individuals with post-stroke spasticity during active functional tasks
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.