Abstract

We have investigated visual responses to moving stimuli presented to the normal hemifield of a hemianope, GY, who exhibits residual visual function in his right, 'blind' hemifield. Preliminary experiments established that his perception of moving stimuli localized in his 'blind' hemifield is retained when a similar stimulus is presented simultaneously in the normal hemifield. In response to a grating stimulus moving horizontally towards fixation in the non-foveal region of the normal, left hemifield, he perceives in addition to a normal motion percept in the left hemifield, a sensation of movement localized in the right hemifield. Qualitatively, this latter is indistinguishable from responses elicited by direct stimulation localized within his 'blind' hemifield by moving stimuli. We have investigated the characteristics of the mechanisms which induce the 'blind' field component of GY's responses to stimulation of the normal hemifield. We show that GY's sensitivity for detection of movement localized within his 'blind' hemifield is dependent on the direction of movement, the contrast and the velocity of a grating presented to the normal hemifield. No induced effects were recorded in response to colour or to non-moving, flickering stimuli. We examine the possible contribution of scattered light to our observations, and eliminate this factor by consideration of our experimental results. We discuss the neural mechanisms which may be involved in this response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call