Abstract

A multi-modal mouse incorporating tactile and force feedback was tested in a target selection task with 12 subjects. Four feedback conditions (normal, tactile, force, tactile+force) were combined with three target distances and three target sizes. We found significant reductions in the overall movement times and in the time to stop the cursor after entering the target. This effect was particularly pronounced for the tactile condition and for small targets. However, compared to normal feedback, error rates were higher with the tactile and tactile+force conditions. The motor-sensory bandwidth calculated using Fitt's law, normalized for spatial variability, was highest in the presence of tactile feedback (6.4 bits/s). This was followed by tactile+force (6.2 bits/s), normal (5.9 bits /s), and force feedback (5.8 bits/s). These results indicate that modifying a mouse to include tactile feedback, and to a lesser extent, force feedback, offers performance advantages in target selection tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call