Abstract
Grain stored in bins is initially a relatively homogenous resource patch for stored-product insects, but over time, spatial pattern in insect distribution can form, due in part to insect movement patterns. However, the factors that influence stored-product insect movement patterns in grain are not well-understood. This research focused on the movement of the lesser grain borer, Rhyzopertha dominica (F.), within a simulated wheat grain mass (vertical monolayer of wheat) and the identification of factors that contribute to overall and upward movement (age since adult emergence from an infested kernel [1, 7, and 14 d], sex, strain, and different levels of environment quality). We also used the model selection approach to select the most relevant factors and determine the relationships among them. Three-week-old adults tended to stay closer to the surface compared with 1- or 2-wk-old insects. Also, females tended to be more active and to explore a larger area compared with males. Explored area and daily displacement were also significantly strain-dependent, and increasing grain infestation level decreased daily displacement and explored area. Variation in movement pattern is likely to influence the formation of spatial pattern and affect probability to disperse. Understanding movement behavior within a grain bin is crucial to designing better strategies to implement and interpret monitoring programs and to target control tactics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.