Abstract

The fate and movement of 2,4-dichlorophenoxyacetic acid (2,4-D), in terms of sorption–desorption and leaching potential, were evaluated in urban soils following the batch experimental method. The sorption kinetics of 2,4-D in soils followed both “fast” and “slow” sorption processes that could be well described by a pseudo-second-order kinetics model, suggesting that 2,4-D was partitioned into soil organic matter and clay surfaces, and eventually diffused into soil micropores. The sorption isotherms were linear, following both Langmuir and Freundlich models. Partially decomposed or undecomposed organic matter present in urban soils decreased sorption and increased desorption of 2,4-D. Also, sorption of 2,4-D increased with an increase in the contents of clay and Al and Fe oxides, whereas sand and alkaline pH increased the desorption process. The lower calculated Kd values suggest that 2,4-D is highly mobile in urban soils than in agricultural soils. The calculated values of groundwater ubiquity score, leachability index, and hysteresis index indicated that the herbicide is highly prone to leach out from surface soil to groundwater which might affect the quality of potable water. The present study clearly suggests that 2,4-D must be judiciously applied in the urban areas in order to minimize the potential health and environmental risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.