Abstract

In an effort to investigate possible involvement of abscisic acid (ABA) in foliar abscission processes, its movement and endogenous levels were examined in cotyledons taken from cotton seedlings (Gossypium hirsutum L.) subjected to varying degrees of water deficit, a condition which initiates leaf abscission. Using a pulse-labeling technique to avoid complications of uptake and exit from the tissue, ABA-1-(14)C movement was observed in both basipetal and acropetal directions in cotyledonary petioles taken from well watered, stressed, and rewatered plants. The label distribution patterns obtained after 1 and 3 hours of transport under all situations of water supply were diffusive in nature and did not change when tested under anaerobic conditions. The transport capacity of the petioles ranged from 3.6 to 14.4% ABA-1-(14)C transported per hour at estimated velocities of 0 to 2 millimeters per hour. Comparison of basipetal and acropetal movement indicated a lack of polarity under all conditions tested. These low transport capacities and slow velocities of movement, when compared to the active transport systems associated with auxin movement, as well as the lack of anaerobic effects and polarity, suggest that ABA movement in cotton cotyledonary petiole sections is facilitated by passive diffusion. Increases in free and bound ABA in the lamina with increased water stress did not correlate with patterns of cotyledonary abscission. Thus, no evidence was found to suggest that ABA is directly involved in stress-induced abscission processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.