Abstract

1. A primary determinant of movement strategies is travel speed, which modulates both power consumption and distance travelled and thus varies according to ecological circumstance. Many dense animals moving in 3D media face costs according to their movement trajectory and it should therefore equally be optimized according to circumstance. 2. We investigated the power requirements (using dynamic body acceleration as proxy for power) in relation to movement geometry of nine whale sharks (Rhincodon typus) and discovered that movement geometry significantly affects power requirements in a manner similar to travel speed. 3. Whale sharks dive repeatedly and use their negative buoyancy to glide during descents, while ascents were characterized by strong locomotory activity. Power requirements of ascents increased with the square of degrees pitch and were significantly greater than both level and descent swimming. 4. The differences in geometry of five dive types are explored using four empirical optimality models based on minimum power based on our measurements. These models suggest that some dive types minimize the horizontal cost of transport, whereas others minimize the cost of vertical transport. Whale sharks are presumed to shift diving geometry with changing currencies and ecological context. The adaptive significance of appropriate diving geometry and associated power requirements is discussed with regard to current hypotheses for diving in gill-breathers: search, orientation and travel. 5. Movement geometry significantly affects the cost of locomotion and is probably modulated by animals according to ecological circumstance. The in situ measurement of animal trajectory and locomotory activity via accelerometers now permits testing context-dependent movement geometry in free-ranging animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call