Abstract
An $(n_{k})$ configuration is a collection of points and straight lines, usually in the Euclidean plane, so that each point lies on $k$ lines and each line passes through $k$ points; such a configuration will be called symmetric if it possesses non-trivial geometric symmetry. Although examples of symmetric $(n_{3})$ configurations with continuous parameters are known, to this point, all known connected infinite families of $(n_{4})$ configurations with non-trivial geometric symmetry had the property that each set of discrete parameters describing the configuration corresponded to a single $(n_{4})$ configuration. This paper presents several new classes of highly symmetric $(n_{4})$ configurations which have at least one continuous parameter; that is, the configurations are movable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Electronic Journal of Combinatorics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.