Abstract

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-Q nanocavity can be created by placing a single III–V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III–V nanocavity devices in Si photonic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.