Abstract

The plus-sense RNA genome of Japanese encephalitis virus (JEV) contains noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. The last 83 nucleotides of the 3'-NCR are predicted to form stable stem-loop (SL) structures. The shape of this 3'-SL structure is highly conserved among divergent flaviviruses even though only small stretches of nucleotide sequence contained within these structures are conserved. These SL structures have been predicted to function as cis-acting signals for RNA replication and as such may bind to viral and cellular proteins that may be involved in viral replication. We have studied the interaction of the JEV 3'-NCR RNA with host proteins using gel retardation assays. We show that the JEV 3'-SL structure RNA forms three complexes with proteins from the S100 cytoplasmic extract prepared from the neonatal mouse brain. These complexes could be obtained in the presence of 200 mM KCl, indicating that the RNA-protein interaction may be physiologically relevant. UV-induced cross-linking and Northwestern blotting analyses detected three proteins with apparent molecular masses of 32, 35, and 50 kDa that bound to the JEV 3'-SL structure RNA. Screening of the neonatal mouse brain cDNA library with the JEV 3'-SL structure RNA identified a 36-kDa Mov34 protein interacting with it. Competition experiments using the RNA extracted from JEV virions established that the 36-kDa Mov34 protein indeed bound to the JEV genome. Murine Mov34 belongs to a family of proteins whose members have been shown to be involved in RNA transcription and translation. It is, therefore, likely that the murine Mov34 interaction with JEV 3'-NCR has a role in RNA replication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.